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Abstract Background: Individuals with subjective memory impairment (SMI) report worsening of memory
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without impairment in cognitive tests. Despite normal cognitive performance, they may be at higher
risk of cognitive decline compared with individuals without SMI.
Methods: We used a discriminative function (a support vector machine) trained on an independent
data set of 226 healthy control subjects and 191 patients with probable Alzheimer’s disease (AD) de-
mentia to characterize the baseline gray matter patterns of 24 individuals with SMI and 53 control
subjects. We tested for associations of these gray matter patterns with SMI presence, cognitive
performance at baseline, and cognitive decline at follow-up.
Results: Individuals with SMI showed greater similarity to an AD graymatter pattern compared with
control subjects without SMI. In addition, episodic memory decline was associated with an AD gray
matter pattern in the SMI group.
Conclusions: Our results indicate a link between the gray matter atrophy pattern of patients with AD
and the presence of SMI. Furthermore, multivariate pattern recognition approaches seem to be
a sensitive method for identifying subtle brain changes that correspond to future memory decline
in SMI.
� 2014 The Alzheimer’s Association. All rights reserved.
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1. Introduction

Individuals with subjective memory impairment (SMI)
report declining memory without measurable cognitive def-
icits. Whether individuals with SMI are at greater risk of
both cognitive decline and the development of mild cogni-
tive impairment (MCI) and Alzheimer’s disease (AD) de-
mentia still remains an area of controversy. Although some
studies demonstrate an increased risk for those with SMI
[1,2], others found no relation between SMI and cognitive
eserved.
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performance or cognitive decline (see Aschenbrenner and
colleagues [3] for an overview). Specifically, a cross-
sectional study [4] found that subjective memory complaints
reported in the memory complaint questionnaire [5] were
not associated with cognitive measures. A recent study by
Reid and colleagues [6] found the Memory Complaint
Questionnaire (MAC-Q) to be influenced greatly by affec-
tive status and not to be a useful screening tool of memory
impairment. One longitudinal study [7] found that more se-
vere memory complaints reported in the memory function
questionnaire [8] were not associated with cognitive mea-
sures but with lower mood and greater global psychological
distress after 5 years of follow-up. Subjects who developed
cognitive impairment over 5 years reported more complaints
at baseline, but this relationship was not statistically signif-
icant.

The lack of a general definition of SMI and the existence of
several terms (e.g., subjectivememory complaints, subjective
memory impairment, subjective cognitive impairment) com-
plicates the comparability of results across studies. In addi-
tion, there is no general guideline of how to measure SMI.
Nevertheless, research on SMI and the investigation of longi-
tudinal cognitive development of those individuals is of sub-
stantial clinical relevance. The identification of those
individuals with SMI who will show progressive cognitive
declinewould be ofmajor benefit for future dementia preven-
tion strategies becauseAD-related pathological processes be-
gin decades before the onset of symptoms of dementia [9].
SMI may, therefore, indicate the first changes in cognition,
corresponding to a very subtle alteration at the pre-MCI stage
of AD, and thus may be a clinical indicator for predementia
and pre-MCI biomarker-based detection of AD [10].

So far, a number of studies have reported cross-sectional
biomarker evidence for AD in SMI [11–15]. The first
longitudinal studies have been published recently [16–18].
Stewart and colleagues [18] found an association between
longitudinal changes in hippocampal volume in nonde-
mented individuals with subjective reports of memory im-
pairment in a population-based sample, but subjects with
MCI were not excluded from the study. Selnes and col-
leagues [17] found that structural connectivity of the medial
temporal lobe, measured using Diffusion Tensor Imaging
DTI, outperformed cerebrospinal fluid biomarkers in the
prediction of cognitive decline in a combined subjective
cognitive impairment/MCI group. In a study on SMI only,
Scheef and colleagues [16] found a weak (nonsignificant) as-
sociation between a smaller right hippocampal gray matter
volume and subsequent cognitive decline. Recently, an in-
creased risk of conversion to both MCI and AD dementia
in subjects with SMI and cerebrospinal fluid evidence for
AD has been reported [19].

In the current study, we evaluated the association between
gray matter patterns and cross-sectional as well as longitudi-
nal cognitive performance in individuals with SMI and con-
trol subjects. The same sample as in the study by Scheef and
colleagues [16] was used to clarify whether the prediction of
memory decline can be improved by multivariate structural
whole-brain data analyzed using support vector machine
(SVM) algorithms. These automated methods are unbiased
[20] because they are independent from subjective judg-
ments [21]. They learn to identify a disease-specific pattern
of gray matter changes from training data. Similar to other
studies in AD [22] or in healthy elderly [23], we reduced
magnetic resonance imaging (MRI) data to a single variable
(decision value [DV]). We adopted an approach that was ap-
plied previously to healthy aging [12] by using healthy el-
derly and AD patients to define a spectrum ranging from
healthy to AD. The DV effectively codes the location of
each individual magnetic resonance (MR) image on this
spectrum, with negative values indicating a pattern similar
to healthy control subjects and positive values indicating
a pattern similar to AD. A DV close to 0 represents the tran-
sition state between both.

In addition to the structural MRI marker, other known
predictors of cognitive decline were included in the statisti-
cal models. These additional predictors were episodic mem-
ory as the most severely and earliest affected cognitive
domain in AD and MCI [24], which is also considered
a proxy for future dementia [25], as well as age, gender, ed-
ucation, and the apolipoprotein E (APOE) genotype (e.g.,
[19,26,27].
2. Methods

2.1. Participants

Individuals with SMI (n 5 24) were recruited from the
memory clinic of the Clinical Treatment and Research
Center for Neurodegenerative Disorders, Department of
Psychiatry and Neurology, University Hospital Bonn
(Bonn, Germany). The fact of being referred to the memory
clinic and a standard question served to identify those with
SMI. To be classified as SMI, subjects had to answer the
questions “Do you feel like your memory is becoming
worse?” with “Yes, and this worries me” instead of one of
the other options (“No” or “Yes, but this does not worry
me”). In addition, SMI status had to be verified by significant
others to increase the validity of reported memory decline
[28]. The informants were the spouses or close relatives
(usually, those who accompanied the individual to the mem-
ory clinic). Furthermore, the onset of SMI had to be within
the past 10 years to exclude chronic “memory complainers.”

Healthy control subjects (n 5 53) without SMI and nor-
mal cognitive performance were recruited from the general
population. The SMI group and the control group did not dif-
fer in terms of gender, age, education or APOE 34 distribu-
tion (see details in Table 1). For all participants, normal
cognitive functioning was defined by the Consortium to Es-
tablish a Registry of Alzheimer’s Disease neuropsychologi-
cal battery [29], using German age-, gender-, and education-
adjusted norms [30]. None of the participants scored less
than 1.5 standard deviations on any of the subtests of the



Table 1

Sociodemographic characteristic of the full sample

Characteristic Controls SMI P value

n 53 24

Male/female 18/35 6/18 c2 5 0.62; P 5 .59 (ns)

Age, years 67.1 6 6.1 66.0 6 7.1 t 5 0.65; P 5 .52 (ns)

Education, years 14.9 6 3.6 14.9 6 2.8 t 5 0.04; P 5 .99 (ns)

APOE ε4 status, n, % 11 (21.2) 7 (29.2) c2 5 0.58; P 5 .45 (ns)

Follow-up interval, months 34.4 (14.2) 34.2 (11.0) t 5 0.58; P 5 .958 (ns)

Decision values 20.6 6 0.5 20.3 6 0.4 t 5 2.42; P 5 .02

Abbreviations: SMI, subjective memory impairment; ns, not significant; APOE, apolipoprotein E. n, number

NOTE. Higher decision values indicate a greater similarity to an Alzheimer’s disease gray matter atrophy pattern. Mean values with 1 standard deviation are

reported.
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Consortium to Establish a Registry of Alzheimer’s Disease
battery.

Exclusion criteria were (i) current neurological or severe
medical disease; (ii) medication that may interfere with cog-
nition, including any psychotropic medication; and (iii) any
other detectable cause of memory impairment. Current and
lifetime psychiatric disorders were assessed with the Struc-
tured Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition [31] and the
Beck’s Depression Inventory [32]. Subjects with a current
psychiatric disorder or with one in the past were excluded,
with the exception of a single depressive episode more
than 10 years ago, which was reported by 2 patients with
SMI and 4 control subjects. The APOE genotype [33] was
determined in all participants. The study protocol was ap-
proved by the ethical committee of the medical faculty of
the University of Bonn. All participants provided written in-
formed consent.

2.2. Longitudinal cognitive testing

Both diagnostic groups were monitored longitudinally to
assess their cognitive course over time. The neuropsycholog-
ical battery at baseline and at three follow-up-visits included
the German Verbal Learning and Memory Test (VLMT
[34]), the Trail Making Test A and B (TMT A/B [35]), and
a lexical 2-minute verbal fluency task [36]. The latter was ap-
plied to test speed and executive functions (see Table 2 for
baseline sores). There were no significant group differences
between the SMI and control subjects in any test of the base-
line neuropsychological battery, although individuals with
SMI scored slightly lower on all tests and needed slightly
more time for the TMT (see Table 2 for details).
Table 2

Baseline performance on neuropsychological battery

Neuropsychological test Controls SMI P value, t test

Verbal memory score 85.2 6 16.1 78.2 6 22.6 .18

Trail Making Test A 43.1 6 12.4 42.8 6 13.4 .92

Trail Making Test B 97.7 6 37.3 103.8 6 58.1 .58

Verbal fluency 10.4 6 4.4 8.7 6 4.6 .14

Abbreviation: SMI, subjective memory impairment.

NOTE. Mean values with 1 standard deviation are reported.
The VLMTassesses learning and recall of a 15-itemword
list, which is presented five times. Four subscores were de-
rived from the VLMT: (i) immediate recall (sum of recalled
words within trials 1–5), (ii) immediate recall after interfer-
ence (a list of new, distracter words in trial 6), (iii) delayed
recall after 30 minutes (trial 7), and (iv) recognition (hits
less false alarms). Assuming that a single summary measure
would be the most stable marker for memory performance,
an exploratory and confirmatory factor analysis of the four
subscores (summed raw values) was performed. Factor solu-
tions for one to five factors were extracted with oblique ro-
tations and compared using the Kaiser-Guttmann criteria
[37], the scree test [38], the F€urntratt criterion [39], and
a comparison of goodness-of-fit indices. Following conven-
tions, calculated c

2 values are expected to be nonsignificant
(P. .05) for relevant factors, because a nonsignificant value
implies a small discrepancy between an observed and im-
plied covariance matrix. In addition, absolute fit indices,
root mean square error of approximation (RMSEA), and
standardized root mean square residual (SRMR) were ex-
pected to be P , .04, and a comparative fit index of more
than 0.90 to be in the acceptable range. The factor analysis
identified one single episodic memory factor with an almost
ideal model fit (n 5 77, c2 5 0.254, df 5 2, comparative fit
index 5 1.000, RMSEA 5 0.000, 90% confidence interval
P 5 .000–0.110, and SRMR 5 0.004). The results of the
c2 test indicated that the chosen model was suitable for these
data, and RMSEA and SRMR values well below 0.04 indi-
cated excellent model fit. Confirmatory factor analysis was
performed to validate the model. Fixing the factor variance
to one and allowing free loadings on the factor yielded a con-
firmation with our sample. This finding is in line with previ-
ous investigations by the authors of the VLMT [40]. We
therefore added up the four scores mentioned earlier into
one robust verbal memory score for cross-sectional and lon-
gitudinal analyses.
2.3. Follow-up visits

Participants of the SMI group returned after 14 6 3.0
months, 32.5 6 6.1 months, and 45.1 6 5.6 months for
follow-up visits. Participants in the control group returned
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after 15.56 2.9 months, 33.36 6.1 months, and 41.76 4.1
months for follow-up visits. In the SMI group, 22 subjects
had at least one follow-up, 16 had two follow-up visits,
and 11 had three follow-ups. In the control group, 45 partic-
ipants had at least one follow-up, 36 had two follow-ups, and
15 had three follow-up visits. Follow-up rates did not differ
between the SMI and control groups (c2 [3]5 2.67, not sig-
nificant). There were no significant differences between
dropouts and participants still remaining in the study with re-
gard to age, gender, and years of education.
2.4. Imaging

All subjects were scanned at baseline on as 3-T MRI
scanner (Philips Achieva, Philips, Best, Netherlands),
equipped with an eight-channel SENSE head coil. Se-
quence parameters were as follows: T1-weighted three-
dimensional turbo field echo; SENSE reduction factor
2.5 in the anteroposterior direction and 1.5 in the right–
left direction; echo time, 3.6 ms; repetition time, 7.6 ms;
flip angle, 8�; field of view, 256 ! 256 mm2; matrix
size, 320 ! 320; number of slices, 170; slice thickness,
0.8 mm; and spatial resolution, 0.8 ! 0.8 ! 0.8 mm3.
Up to three structural data sets were acquired for each sub-
ject. These data sets were averaged to optimize the signal-
to-noise ratio. The mean image volumes entered the
processing pipeline as outlined next.
2.5. Preprocessing

Image preprocessing was done using statistical paramet-
ric mapping software (SPM 8). The unified segmentation al-
gorithm [41] was used in combination with a nonlinear
image warping approach (DARTEL [42]). Unified segmen-
tation estimates the tissue segmentation based on a probabi-
listic Gaussian mixture model including prior knowledge of
a priori probability for every tissue class from a template.
The process estimates jointly the nonlinear registration to
the prior tissue probability maps (TPMs), the segmentation,
and intensity nonuniformity resulting from field inhomoge-
neity. Default processing parameters were used for segmen-
tation. DARTEL was used to warp more accurately the gray
matter TPMs (GM-TPMs) into a common template space.
This included a segmentation (parameters estimated during
the unified segmentation step) and initial resampling to
1.5-mm isotropic resolution. The study-specific population
template was built from the GM-TPMs of the training set.
During this process, the initial template was built by averag-
ing the TPMs of the population, estimating nonlinear map-
ping from all individual TPMs to the average, and warping
all individual TPMs into that common template space.
This process was repeated six times, and for every iteration
taking the average of the warped TPMs as a new template
and gradually decreasing the internal smoothing kernel
size, thus getting gradually crisper templates. All training
and test GM-TPMs were warped into the same space as
the training data, which were derived from a subset of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
which has been used in a previous study [43]. Gray matter
volume normalization by modulation with the Jacobian de-
terminant was used to compensate for local changes in vol-
ume (compression or extension).

2.6. Generation of DVs

The individualMRI data were reduced to a single variable
(DV) by applying a multivariate pattern recognition method.
Intuitively, the DV is a scalar that characterizes individual
MR images on a scale ranging from healthy to progressed
AD. Technically, it is the distance of the testing image to
the separating hyperplane of a classifier. The decision
boundary was obtained by an SVM [44], which is supervised
in a sense that it deducts a classification rule from training
data. Related methods have been found to predict individual
cognition in subjects with AD and MCI [45], and they have
been used successfully to detect those with MCI who will
convert later to dementia [46,47] or those healthy elderly
who will convert to MCI [48].

A linear SVM, implemented as a C-SVM in LibSVM
software [49] was chosen. Data used to train the SVM
were obtained from the ADNI database as described in
our previous work [43]. In brief, we included 226 healthy
control subjects and 191 subjects with probable AD using
the cost parameter that yielded the highest cross-
validation accuracy (accuracy, 86.7%). In addition, we de-
termined voxels that contributed most to the classification
of the training data set.

The trained classifier was applied to each MRI data set of
the study to obtain the DVs, which are similar to the Spatial
Pattern of Abnormality for Recognition of Early Alz-
heimer’s disease (SPARE) index and the Structural Abnor-
mality index (STAND) score used in other classification
studies [22,48]. A detailed description of the DV can be
found elsewhere [44].

2.7. Modeling of cross-sectional and longitudinal
association of DV with group and cognitive performance

Structural equation modeling was used for data analysis
(MPlus 6.12).

2.8. Treatment of time-invariant covariates

The following steps were followed for each association
analysis in the model-fitting process: We first started with
an unconditional model, estimating the dependent variables
without covariates (model 1/ basic model). We then added
age, years of education, APOE 34 status, and gender as cova-
riates (model 2 / model including time-invariant covari-
ates). To reduce the complexity of the final model, only
variables significant at least at a trend level (P , .1) re-
mained in the final model, which is in line with the proposed
scheme of Nesselroade [50]. Because a significant amount of
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residual variance remained after adding covariates to the
model, a final model that included the DVas a predictor vari-
able was generated, given that it yielded the highest model
fit. We report only those results for the final model (model
3 / final model with DV as predictor).
2.9. Cross-sectional group comparison

The association of DV (dependent variable) with group
(SMI and control subjects) and with the covariates remain-
ing in the final model was examined. In addition, a re-
ceiver–operating characteristic (ROC) curve was carried
out to test the discriminative accuracy of the DV regarding
SMI and control subjects (see Fig. 1 for data analysis over-
view).
2.10. Cross-sectional analyses of the association of DV
with cognitive performance

In further cross-sectional models, associations between
memory score (as extracted from the VLMT) as well as
TMTA/B and verbal fluency scores with DVand covariates
that remained in the final model were tested. The models
were both calculated across all subjects and for each group
separately within multigroup models.
Fig. 1. Data analysis overview. ADNI, Alzheimer’s Disease Neuroimaging Initiati

Verbal Learning and Memory Test; SVM, support vector machine; ROC, receiver
2.11. Longitudinal growth curve modeling of cognitive
decline

Growth curve modeling with linear growth factors is
a particularly useful approach of structural equation model-
ing for longitudinal data. Growth curve modeling was ap-
plied because it accommodates irregular numbers of
follow-up information per subject using the full information
maximum likelihood method under a missing at random as-
sumption [51]. Individually varying times between observa-
tions were included by estimating random effects models,
with time as a random variable.

We tested for associations between memory decline over
time (with slope as the dependent variable) and DVas a pre-
dictor, handling time-invariant covariates as described ear-
lier. Multigroup modeling was used to examine the
associations between cognitive changes and DV in both
groups separately (see Fig. 1 for data anlysis overview).
2.12. Estimation method and fit indices

The indices Akaike information criterion (AIC), sample
size-adjusted Bayesian information criterion (BIC), and
RMSEA were used to describe model fit. The maximum
likelihood with robust standard errors (MLR) and c

2 were
ve; AD, Alzheimer’s disease; SMI, subjective memory impairment; VLMT,

–operating characteristic; APOE, apolipoprotein E.
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used for model estimation, allowing robust estimation even
if the assumption of normal distribution was challenged.
We report maximum likelihood parameter estimates, which
can be interpreted as partial regression coefficients, and sig-
nificance values (P values). For longitudinal random
models, usual fit indices (e.g., RMSEA) are not available;
therefore, only the AIC and the sample size-adjusted BIC
were applied.
3. Results

3.1. Cross-sectional group comparison

The final model (model 3) achieved an almost ideal
fit (n 5 77; AIC, 50.873, sample size-adjusted BIC,
46.022; RMSEA 5 0.000). Age (standardized esti-
mate, 0.595, P , .001) and APOE genotype (standard-
ized estimate, 20.244, P , .003) remained as
significant covariates (older age and presence of an
APOE 34 allele being associated with a greater DV)
and, together with group membership (SMI, control sub-
jects: standardized estimate, 20.249, P 5 .002), ex-
plained 49.1% of variance in the DV.

As shown in Table 1, the DV differed statistically signif-
icant between SMI individuals and control subjects, with
SMI showing greater similarity to an AD brain.

The area under the curve of the ROC analysis for the dis-
crimination between SMI and control subjects using DVwas
0.67 (95% confidence interval, 0.54–0.81; P5 .005; Fig. 2).
Figure 3 illustrates voxels that were most informative to
classify AD and healthy control subjects, and therefore con-
tribute to the classification of SMI individuals and control
subjects. The voxels were mostly distributed in the hippo-
campal and parahippocampal areas.
Fig. 2. Receiver–operating characteristic (ROC) curve of classifying indi-

viduals with SMI and controls by decision value.
3.2. Association of DV with cognitive performance at
baseline

The model fit of the final model including the DV
(n 5 77; AIC, 636.388; sample size-adjusted BIC,
632.281; RMSEA5 0.000) outperformed both the uncondi-
tional model (AIC, 656.147; sample size-adjusted BIC,
654.505) and the model with significant covariates except
the DV (AIC, 638.822; BIC, 650.476). The DV predicted
baseline episodic memory across all subjects (standardized
estimate, 20.248; P 5 .01). With increasing DV, memory
performance was reduced. Years of education (standardized
estimate, 0.336; P 5 .001) and gender (standardized
estimate, 20.389, P , .0001) had additional effects, with
better educated and female participants performing best. In
the multigroup model, the association between DV and
memory was significant in the control group (standardized
estimate, 20.334; P 5 .005) and was of similar size and
reached the level of a statistical trend toward significance
in the SMI group (standardized estimate, 20.297,
P 5 .058). The same covariates contributed significantly in
the separate analyses. Figure 4 displays the association of
DV with memory performance at baseline in both groups.
There was no significant prediction of baseline speed and
executive function performance (neither TMT nor verbal
fluency) by DV.
3.3. Association of the DV with memory decline

The model fit of the final model including DV (n 5 77;
AIC, 1787.283; sample size-adjusted BIC, 1810.591) out-
performed both the fit of the unconditional model (AIC,
1801.801; sample size-adjusted BIC, 1822.778) and the
model with significant covariates except the DV (AIC,
1794.117; sample size-adjusted BIC, 1819.755). With in-
creasing DV, memory declined more (three measurement
points [baseline plus two follow-ups]: estimate, 20.272;
P 5 .023; and four measurement points [baseline plus three
follow-ups]: estimate,20.292; P 5 .008). Figure 5 displays
the association of DV with memory performance in both
groups at the last follow-up visit. Only gender was retained
as a covariate in the final model, with women showing less
memory decline than men (estimate, 20.416; P 5 .001).
In the analogous multigroup analysis, memory decline vari-
ance explained by DV was significant in the SMI group over
three measurement points (estimate,20.406; P5 .012), but
not in the control group (estimate, 20.163, P 5 .385). Over
four measurement points, the association between DV and
memory decline in the SMI group no longer remained signif-
icant. The loss of significance is attributable to the increased
standard error of the memory slope estimate, resulting from
the small number of subjects with four measurement points.
There was no significant association of DV with speed or ex-
ecutive functions (TMT and verbal fluency) over time for
three or four time points.



Fig. 3. Illustration of the most relevant voxels for discrimination between Alzheimer’s disease (AD) dementia and healthy control subjects as identified by the

trained classifier. Gray background represents the gray matter template of the training sample. Cold colors indicate regions where decreased gray matter con-

tribute toward identification of a test sample as having AD dementia whereas warm colors indicate regions where increased gray matter contribute toward iden-

tification of a test sample as having AD dementia. The model was obtained with Alzheimer’s disease Neuroimaging Initiative healthy control subjects (n5 226)

vs. probable AD dementia (n 5 191). R, right; L, left.
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4. Discussion

The aim of our study was to evaluate the association of
SMI with an AD-like gray matter atrophy pattern. In addi-
tion, we investigated the association of cross-sectional as
well as longitudinal cognitive performance with this gray
matter atrophy pattern in individuals with SMI and in control
subjects.

An SVM based on a training set of AD dementia patients
and control subjects derived from an independent data set
was used to reduce the entire MRI gray matter information
to one single variable (DV) that expresses similarity to an
Fig. 4. Association between baseline verbalmemory score and degree of sim-

ilarity to an Alzheimer’s disease (AD) gray matter atrophy pattern. SMI, sub-

jective memory impairment. *Higher scores indicate better performance.
AD brain. Voxels most relevant for the classifier to separate
patients with AD and healthy control subjects were predom-
inantly distributed in the hippocampus and parahippocam-
pus. In earlier studies, similar regions have been identified
to discriminate AD from other neurodegenerative diseases
[21] and to display volume reduction in subjects with
SMI [11,13].

The DV differed significantly between SMI and control
subjects, with SMI subjects showing greater similarity to
an AD brain. ROC analysis revealed a relatively low, but
Fig. 5. Association between verbal memory score at last follow-up and de-

gree of similarity to an Alzheimer’s disease (AD) gray matter atrophy pat-

tern. SMI, subjective memory impairment. *Higher scores indicate better

performance.
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nevertheless significant, discrimination accuracy (area under
the curve, 0.67).

Given that the ADNI data used here as an entirely inde-
pendent training set were acquired with different scanner
hardware and MR sequences, our results speak to the stabil-
ity of pattern recognition methods across sites and indicate
robust differences of the structural brain pattern between
SMI and control subjects.

Similarity to an AD brain, as indicated by the DV, was
associated with poorer episodic memory. This association
was observed across all subjects and within each group, al-
though this effect only reached a trend toward statistical
significance (P 5 .058) in the SMI group, most likely be-
cause of the limited sample size. Our data extend earlier
studies with similar findings in healthy individuals, in sub-
jects with MCI, and in subjects with AD dementia using
voxel-based morphometry and related methods [45,52] to
individuals with SMI.

The finding of an association of cognitive performance
with an AD gray matter atrophy pattern in the control group
is of particular interest because it suggests that anatomic
similarity to an AD brain is related significantly to memory
functioning, even at stages without SMI. In agreement with
this finding, a study by Rentz and colleagues [53] with cog-
nitively normal elderly revealed a correlation between the
degree of amyloid deposition in the brain as measured
with positron emission tomography and poorer memory per-
formance assessed with a highly challenging memory task.
This suggests that cognitively normal elderly subjects with
asymptomatic preclinical ADmay be detected with sensitive
neuropsychological markers.

Of substantial relevance is the prediction of future cog-
nitive decline in SMI. In our study, the DV predicted ep-
isodic memory decline significantly in SMI participants.
To our knowledge, this is the first association of an MR
biomarker of AD with memory decline in an SMI sample.
In our recent publication with a region of interest-based
approach in the same sample, we observed an association
of memory decline with gray matter volume of the right
hippocampus only at a trend level [16]. This suggests
that the use of whole-brain information by the DV is supe-
rior to single, preselected target regions. The DV did not
predict measures of speed and executive function in our
study (neither at baseline nor at follow-up). In contrast
to markers of episodic memory (i.e., VLMT), those are
not considered predictors for future dementia [25] and in-
dicate the specificity of our findings.

Our study is limited by the small sample sizes and the ir-
regular numbers and intervals of follow-up visits, which we
addressed by applying growth curve modeling approaches.
In addition, we did not focus on conversion to dementia.
The required observational time periods would have ex-
tended up to 10 years in samples that start at the SMI stage.

In summary, our study indicates a link between an AD-
like gray matter atrophy pattern and the presence of SMI
as well as an association of future episodic memory decline
and an AD-like brain in subjects with SMI. This suggests
that structural MRI in conjunction with fully automated mul-
tivariate pattern recognition methods is sensitive to brain
changes already in a stage without clinical signs of memory
impairment.
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RESEARCH IN CONTEXT

1. Systematic review: A literature search was conduct-
ed via PubMed using the terms “subjective memory
impairment MRI” and “subjective cognitive impair-
ment MRI” for reports published before November
10, 2012.

2. Interpretation: Early diagnosing of dementia is one
of the major topics in research today. Therefore,
the use of pattern recognition methods has gained
a lot importance during past years. Our results sup-
port subjective memory impairment as a very early
manifestation of Alzheimer’s disease (AD), and mul-
tivariate pattern recognition approaches as a sensitive
method for the identification of subtle brain changes
that correspond to the preclinical stages of AD.

3. Future directions: Our study indicates the combination
of earliest symptomatic signs and highly sensitive dis-
ease markers as promising for the identification of in-
dividuals for future intervention in preclinical AD. In
future research, early diagnosing should also be fo-
cused on healthy elderly people. This is supported by
our finding of an association of cognitive performance
andADgraymatter atrophy pattern in control subjects
because it suggests that anatomic similarity to an AD
brain is related significantly to memory functioning
even in normal aging.
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